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Abstract

We consider the problem of approximation of a continuous multivariate function by sums of
two ridge functions in the uniform norm. We obtain a formula for the approximation error in
terms functionals generated by closed paths.
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1 Introduction

In modern approximation theory, ridge functions play an essential role. A ridge function is a
multivariate function of the form

G(x) = g (a · x) = g (a1x1 + . . .+ adxd) ,

where g : R→ R and a = (a1, ..., ad) is a fixed vector (direction) in Rd\ {0} . In other words, a ridge
function is a multivariate function constant on the parallel hyperplanes a · x = c, c ∈ R. These
functions and their linear combinations arise naturally in problems of computerized tomography
(see, e.g., [26, 31]), statistics (see, e.g., [5, 9, 10, 15]), partial differential equations [24] (where
they are called plane waves), neural networks (see, e.g., [6, 16, 33, 35] and references therein), and
approximation theory (see, e.g., [6, 7, 13, 19, 21, 25, 27, 32, 33, 34, 37]).

Consider the following set of functions

R = R(a,b) = {g1(a · x) + g2(b · x) : gi ∈ C(R), i = 1, 2} .

That is, we fix directions a and b and consider linear combinations of ridge functions with these
directions.

Let f (x) be a given continuous function on some compact subset Q of Rd. We want to obtain
a formula for computation of the approximation error

E (f) = E(f,R)
def
= inf

g∈R(a,b)
‖f − g‖ .

Recall that if there exists g0 ∈ R such that

‖f − g0‖ = E(f),

then g0 is called an extremal element.
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The approximation problem concerning the set R (a,b) arises in other problems too. Buck [4]
considered the classical functional equation: given s ∈ C[0, 1], 0 ≤ s(t) ≤ 1, for which u ∈ C[0, 1]
does there exist ϕ ∈ C[0, 1] such that

ϕ(t) = ϕ (s(t)) + u(t)?

He proved that the set of all u satisfying this condition is dense in the set

{w ∈ C[0, 1] : w(t) = 0 whenever s(t) = t}

if and only if R (a,b) with the unit directions a = (1; 0) and b = (0, 1) is dense in C(K), where
K = {(x, y) : y = x or y = s(x), 0 ≤ x ≤ 1}.

One can observe that if d = 2, a and b coincide with the coordinate directions, then the
functions g1(a · x) and g2(b · x) are univariate. We see that the approximation of a bivariate
function by sums of univariate functions is a special case of the approximation problem considered
in this paper. It should be remarked that there are many papers devoted to this subject (see, e.g.,
[2, 8, 11, 14, 22, 23, 28, 29, 36] and references therein).

2 The approximation error formula

Suppose Q is a compact set in Rd and a,b ∈ Rd\{0} are fixed directions.

Definition 2.1. A finite or infinite ordered set p = (p1,p2, ...) ⊂ Q with pi 6= pi+1, and either
a ·p1 = a ·p2,b ·p2 = b ·p3,a ·p3 = a ·p4, ... or b ·p1 = b ·p2, a ·p2 = a ·p3,b ·p3 = b ·p4, ...is
called a path with respect to the directions a and b.

Paths with respect to two directions in R2 were first considered by Braess and Pinkus [3].
They showed that paths give geometric means of deciding if a set of points

{
xi
}m
i=1
⊂ R2 has the

“non-interpolation property” (for this terminology see [3]). Ismailov and Pinkus [17] used these
objects to solve the problem of interpolation on straight lines by ridge functions with two fixed
directions. If a and b are the coordinate vectors in R2, then the objects in Definition 2.1 turn
into “bolts of lightning” (see, e.g., [1, 5, 29]). It is well known that the idea of bolts was first
introduced by Diliberto and Straus [8] and played an essential role in problems of approximation
by sums of univariate functions (see, e.g., [8, 11, 14, 22, 23, 28, 29]). Note that the name “bolt of
lightning” is due to Arnold [1]. Ismailov [18, 20] generalized paths to those with respect to a finite
set of functions. Paths with respect to n arbitrarily fixed functions turned out to be very useful in
problems of representation by linear superpositions.

In the sequel, we use the term “path” instead of the long expression “path with respect to the
directions a and b”. A finite path (p1,p2, ...,p2n) is said to be closed if (p1,p2, ...,p2n,p1) is also
a path. A path (p1, ...,pn) in a set Q is called extensible if there exist points y, z ∈ Q such that
(y,p1, ...,pn, z) is a path. For example, in a square ABCD with the vertices (1, 0), (0, 1), (−1, 0),
(0,−1), the set joining middle points of the sides AB, BC, CD and AD forms a closed path. Any
path (p1, ...,pn) ⊂ ABCD with p1 and pn different from A,B,C,D, is extensible.

We associate a closed path p = (p1,p2, ...,p2n) with the functional

Gp(f) =
1

2n

2n∑
k=1

(−1)k+1f(pk).
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This functional has the following obvious properties:
(a) If g ∈ R (a,b), then Gp(g) = 0.
(b) ‖Gp‖ ≤ 1 and if pi 6= pj for all i 6= j, 1 ≤ i, j ≤ 2n , then ‖Gp‖ = 1.

To prove our main result we need two auxiliary lemmas from [21].

Lemma 2.1. Let a compact set Q have closed paths. Then

sup
p⊂Q
|Gp(f)| ≤ E (f) , (2.1)

where the sup is taken over all closed paths. Moreover, inequality (2.1) is sharp, i.e. there exist
functions for which (2.1) turns into equality.

Lemma 2.2. Let Q be a convex compact subset of Rd, f(x) ∈ C(Q). For a vector e ∈ Rd\{0}
and a real number t set

Qt = {x ∈ Q : e · x = t} , Th = {t ∈ R : Qt 6= ∅} .

Then the functions

g1(t) = max
x∈Qt

f(x), t ∈ Th and g2(t) = min
x∈Qt

f(x), t ∈ Th

are defined and continuous on Th.

The following theorem is valid.

Theorem 2.1. Let Q ⊂ Rd be a convex compact set and f ∈ C(Q). Assume the following conditions
hold.

1) there exists an extremal element g0 ∈ R (a,b) for the function f ;
2) for any extensible path q = (q1, ...,qn) ⊂ Q there exist points qn+1,qn+2, ...,qn+s ∈ Q such

that (q1, ...,qn,qn+1, ...,qn+s) is a closed path and s is not more than some positive integer n0
independent of q.

Then the approximation error can be computed by the formula

E (f) = sup
p⊂Q
|Gp(f)| ,

where the sup is taken over all closed paths.

Proof. For brevity of the exposition, in the sequel, we use the concept of “an extremal path”.
A finite or infinite path (p1,p2, ...) is said to be extremal for a function u ∈ C(Q) if u(pi) =
(−1)i ‖u‖ , i = 1, 2, ... or u(pi) = (−1)i+1 ‖u‖ , i = 1, 2, ... (see [21]). Regarding extremal paths for
the function f1 = f − g0, there are only two possible options. The first option is when there exists
a closed path p0 = (p1, ...,p2n) extremal for the function f1. In this case, it is easy to see that

|Gp0
(f)| = |Gp0

(f − g0)| = ‖f − g0‖ = E(f).
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Considering this, the assertion of the theorem follows from (2.1). The second option is when there
does not exist a closed path extremal for the function f1. Let us prove that in this case, there exists
an infinite path extremal for f1. Suppose the contrary. Suppose that there exists a positive integer
N such that the length of each path extremal for f1 is not more than N . Here by length of a path
we mean its number of points. Define the following functions:

fn = fn−1 − g1,n−1 − g2,n−1, n = 2, 3, ...,

where

g1,n−1 = g1,n−1 (a·x) =
1

2

 max
y∈Q

a·y=a·x

fn−1(y) + min
y∈Q

a·y=a·x

fn−1(y)


g2,n−1 = g2,n−1(b·x) =

1

2

 max
y∈Q

b·y=b·x

(fn−1(y)− g1,n−1(a·y))

+ min
y∈Q

b·y=b·x

(fn−1(y)− g1,n−1(a·y))

 .

Note that by Lemma 2.2, all the above functions fn(x), n = 2, 3, ..., are continuous on Q. Since
g0 is an extremal element for f , the equality ‖f1‖ = E (f) holds. Let us show that ‖f2‖ = E (f).
Indeed, for any x ∈ Q

f1(x)− g1,1(a·x) ≤ 1

2

 max
y∈Q

a·y=a·x

f1(y)− min
y∈Q

a·y=a·x

f1(y)

 ≤ E(f) (2.6)

and

f1(x)− g1,1(a·x) ≥ 1

2

 min
y∈Q

a·y=a·x

f1(y)− max
y∈Q

a·y=a·x

f1(y)

 ≥ −E(f). (2.7)

Considering the definition of g2,1(b · x), for any x ∈ Q we can write

f1(x)− g1,1(a · x)− g2,1(b · x)

≤ 1

2

 max
y∈Q

b·y=b·x

(f1(y)− g1,1(a · y))− min
y∈Q

b·y=b·x

(f1(y)− g1,1(a · y))


and

f1(x)− g1,1(a · x)− g2,1(b · x)

≤ 1

2

 min
y∈Q

b·y=b·x

(f1(y)− g1,1(a · y))− max
y∈Q

b·y=b·x

(f1(y)− g1,1(a · y))

 .
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Using (2.6) and (2.7) in the last two inequalities, we obtain that for any x ∈ Q

−E(f) ≤ f2(x) = f1(x)− g1,1(a·x)− g2,1(b·x) ≤ E(f).

Thus,
‖f2‖ ≤ E(f). (2.8)

Since f2 − f ∈ R (a,b), it follows from (2.8) that ‖f2‖ = E(f).
Similarly, one can show that ‖f3‖ = E(f), ‖f4‖ = E(f), and so on. Thus, ‖fn‖ = E(f) for all

n = 1, 2, ...
Let us now prove the following implications

f1(p0) < E(f)⇒ f2(p0) < E(f) (2.9)

and
f1(p0) > −E(f)⇒ f2(p0) > −E(f), (2.10)

where p0 ∈ Q. First, we are going to prove the implication

f1(p0) < E(f)⇒ f1(p0)− g1,1(a · p0) < E(f). (2.11)

There are two possible cases.
1) max

y∈Q
a·y=a·p0

f1(y) = E(f) and min
y∈Q

a·y=a·p0

f1(y) = −E(f). In this case, g1,1(a · p0) = 0. Therefore,

f1(p0)− g1,1(a · p0) < E(f).

2) max
y∈Q

a·y=a·p0

f1(y) = E(f)− ε1 and min
y∈Q

a·y=a·p0

f1(y) = −E(f) + ε2,

where ε1, ε2 ≥ 0 and ε1 + ε2 6= 0. In this case,

f1(p0)− g1,1(a·p0) ≤ max
y∈Q

a·y=a·p0

f1(y)− g1,1(a·p0) =
1

2

 max
y∈Q

a·y=a·p0

f1(y)− min
y∈Q

a·y=a·p0

f1(y)


= E(f)− ε1 + ε2

2
< E(f).

Thus we have proved (2.11). Using the same method, we can also prove that

f1(p0)− g1,1(a·p0) < E(f)⇒ f1(p0)− g1,1(a·p0)− g2,1(b·p0) < E(f). (2.12)

Implications (2.11) and (2.12) yield (2.9). By the same way one can prove the validity of (2.10).
From implications (2.9) and (2.10) it follows that if f2(p0) = E(f), then f1(p0) = E(f) and if
f2(p0) = −E(f), then f1(p0) = −E(f). This simply means that each path extremal for f2 is
extremal for f1.

We supposed above that any path extremal for f1 has the length not more than N . Let us
show that in his case, any path extremal for f2 has the length not more than N − 1. Suppose the
contrary. Suppose that there is a path extremal for f2 with the length equal to N . Denote this
path by q = (q1,q2, ...,qN ). Without loss of generality we may assume that b · qN−1 = b · qN . As
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we have shown above, the path q is extremal for f1. Assume f1(qN ) = E(f). Then there is not a
point q0 ∈ Q such that q0 6= qN , a ·q0 = a ·qN and f1(q0) = −E(f). Indeed, if there was such q0

and q0 6∈ q, then the path (q1,q2, ...,qN ,q0) would be extremal for f1. But this would contradict
our assumption that any path extremal for f1 has the length not more than N . On the other hand,
if there was such q0 and q0 ∈ q, then from points of q we could form a closed extremal path for
f1, which would contradict our assumption that there does not exist a closed extremal path for f1.
Hence we conclude that

max
y∈Q

a·y=a·qN

f1(y) = E(f), min
y∈Q

a·y=a·qN

f1(y) > −E(f).

Therefore,
|f1(qN )− g1,1(a·qN )| < E(f).

From the last inequality, by the similar way as above, one can obtain that

|f2(qN )| < E(f).

This means that the path (q1,q2, ...,qN ) can not be extremal for f2. Thus any path extremal for
f2 has the length not more than N − 1.

By the same way, it can be shown that any path extremal for f3 has the length not more
than N − 2, any path extremal for f4 has the length not more than N − 3 and so on. Finally,
we obtain that there is not a path extremal for fN+1. Then there is not a point p0 ∈ Q such
that |fN+1(p0)| = ‖fN+1‖. But the norm ‖fN+1‖ must be attained, since by Lemma 2.2, all the
functions f2, f3, ..., fN+1 are continuous on the compact set Q. The obtained contradiction means
that there exists an infinite path extremal for f1.

Let a path p = (p1,p2, ...,pn, ...) be infinite and extremal for f1. Note that all the points pi

must be distinct, otherwise we could form a closed extremal path, contrary to our assumption.
Without loss of generality we may assume that this path is extensible (if it is not, we may start
with the path (p2, ...,pn, ...)). Consider the sequence pn = (p1,p2, ...,pn), n = 1, 2, ..., of finite
paths. Since there exists an extremal element By condition (2) of the theorem, for each path pn
there exists a closed path pmn

n = (p1,p2, ...,pn,qn+1, ...,qn+mn
), where mn ≤ n0. The functional

Gpmn
n

obeys the inequalities

∣∣Gpmn
n

(f)
∣∣ =

∣∣Gpmn
n

(f − g0)
∣∣ ≤ n ‖f − g0‖+mn ‖f − g0‖

n+mn
= ‖f − g0‖ (2.13)

and ∣∣Gpmn
n

(f)
∣∣ ≥ n ‖f − g0‖ −mn ‖f − g0‖

n+mn
=
n−mn

n+mn
‖f − g0‖ . (2.14)

We obtain from (2.13) and (2.14) that

sup
pmn
n

∣∣Gpmn
n

(f)
∣∣ = ‖f − g0‖ . (2.15)

Since g0 is an extremal element, it follows from (2.15) and Lemma 2.1 that

E (f) = sup
p⊂Q
|Gp(f)| ,
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where the sup is taken over all closed paths of Q. The theorem has been proved.

Remark 1. Theorem 2.1 generalizes the result of Diliberto and Straus (see [8, Theorem 1]) from
the sum of univariate functions to the sum of ridge functions.

Remark 2. The question if there exists an extremal element g0 ∈ R for f is far from trivial. Some
conditions on Q sufficient for the existence of an extremal element for each f in C(Q) may be found
in [19].

Note that the hypothesis on the set Q “for any extensible path q = (q1,q2, ...,qn) ⊂ Q ...
independent of q” strongly depends on the fixed directions a and b. For example, take the unit
square I2 = [0; 1]2 and fix the directions a =

(
1; 1

2

)
and b = ( 1

2 ; 1
2 ). In this case, the vertex (1; 1)

is not reached with any of the directions orthogonal to a and b respectively. Therefore, for any
positive integer n0 and any point q0 in I2 one can chose a point q1 ∈ I2 from a sufficiently small
neighborhood of (1; 1) so that any path containing q0 and q1 has the length more than n0. In
general, if a compact convex set Q ⊂ R2 satisfies the second condition of the theorem, then any
point in the boundary of Q must be reached with at least one of the two directions orthogonal to a
and b respectively. In the d−dimensional space, d > 2, there are many directions orthogonal to a
and b. In this case, the condition requires that any point in the boundary of Q should be reached
with at least one direction orthogonal to a or b. It should be remarked that if the space R (a,b) is
proximinal in C(Q) (that is, if any function in C(Q) has an extremal element from R (a,b)), then
the second condition can be removed, which shows the following corollary.

Corollary 2.1. Let Q ⊂ Rd be a convex compact set and R (a,b) is proximinal in C(Q). Then the
assertion of Theorem 2.1 holds for each function f ∈ C(Q).

The proof immediately follows from the result that if R (a,b) is proximinal in C(Q), then the
lengths of irreducible paths are uniformly bounded (see [19]). Note that a path (p1, ...,pn) is
irreducible if any path connecting p1 and pn has equal to or more than n points. If the lengths
of irreducible paths are uniformly bounded by some positive integer n0, then for n > n0 extremal
paths pn = (p1,p2, ...,pn), known from the proof of Theorem 2.1, must be made closed by adding
not more than n0 points. But as we see above, this leads to the assertion of Theorem 2.1.
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